skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsidilkovski, Alan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Maintaining stable and precise alignment of a laser beam is crucial in many optical setups. In this work, we present a microcontroller-based rapid auto-alignment system that detects and corrects for drifts in a laser beam trajectory using a pair of two-dimensional duo-lateral position sensing detectors (PSDs) and a pair of mirror mounts with piezoelectric actuators. We develop hardware and software for interfacing with the PSDs and for controlling the motion of the piezoelectric mirror mounts. Our auto-alignment strategy—implemented as a state machine on the microcontroller by a real-time operating system kernel from FreeRTOS—is based on a simple linearized geometrical optical model. We benchmark our system using the standard case of coupling laser light efficiently into the guided mode of a single-mode fiber optic patch cable. We can recover the maximum fiber coupling efficiency in ∼10 seconds, even for a laser beam misaligned to the point of zero fiber coupling efficiency. 
    more » « less